Benha University<br>Faculty of Engineering<br>Shoubra<br>Antennas \&Wave Propagation Electrical Eng. Dept.<br>$4^{\text {th }}$ year communication<br>2015-2016

## Sheet (3) - Solution

1. The maximum radiation intensity of a $90 \%$ efficiency antenna is 200 $\mathrm{mW} /$ unit solid angle. Find the directivity and gain (dimensionless and in dB ) when the
(a) Input power is 125.66 mW
(b) Radiated power is 125.66 mW

$$
\begin{aligned}
\text { (a) } D_{0} & =\frac{4 \pi U_{\max }}{\overline{P_{\text {rad }}}}=\frac{4 \pi\left(200 \times 10^{-3}\right)}{0.9\left(125.66 \times 10^{-3}\right)}=22.22=13.47 \mathrm{~dB} \\
G_{0} & =\epsilon_{\star} \cdot D_{0}=0.9(22.22)=20=13.01 \mathrm{~dB} \\
\text { (b) } D_{0} & =\frac{4 \pi U_{\max }}{P_{\text {rad }}}=\frac{4 \pi\left(200 \times 10^{-3}\right)}{\left(125.66 \times 10^{-3}\right)}=20=13.01 \mathrm{~dB} \\
G_{0} & =\epsilon_{\star} \cdot D_{0}=0.9 \cdot(20)=18=12.55 \mathrm{~dB}
\end{aligned}
$$

2. 1 GHz satellite antenna has an E-plane beam-width of $12^{\circ}$ and on H-plane beam-width of $10^{\circ}$. The antenna conductivity and mismatch total loss -3 db . Estimate the gain of antenna.
$-3 d b=10 \log$ (Losses) $\rightarrow \eta=(1-$ Losses $) \Rightarrow \eta=0.5$
$D$ approximate $=\frac{41253}{\theta_{H P} \phi_{H P}}=\frac{41253}{10 * 12}=343.8$
$G=\eta^{*} D=0.5 * 343.8=172 . \rightarrow G_{d b}=10 \log 172=22.4 \mathrm{db}$.
3. A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms, is connected to a transmission line whose characteristic impedance is 50 ohms . Assuming that the pattern of the antenna is given approximately by $U=B_{0} \sin ^{3} \theta$. Find the maximum gain and maximum absolute gain of this antenna.

$$
\begin{aligned}
\left.U\right|_{\max } & =U_{\max }=B_{0} \\
P_{\mathrm{rad}} & =\int_{0}^{2 \pi} \int_{0}^{\pi} U(\theta, \phi) \sin \theta d \theta d \phi=2 \pi B_{0} \int_{0}^{\pi} \sin ^{4} \theta d \theta=B_{0}\left(\frac{3 \pi^{2}}{4}\right) \\
D_{0} & =4 \pi \frac{U_{\max }}{P_{\mathrm{rad}}}=\frac{16}{3 \pi}=1.697
\end{aligned}
$$

Benha University
Faculty of Engineering
Shoubra

## Antennas \&Wave Propagation Electrical Eng. Dept. <br> $4^{\text {th }}$ year communication 2015-2016

Since the antenna was stated to be lossless, then the radiation efficiency $e_{c d}=1$.

$$
\begin{aligned}
G_{0}=e_{c d} D_{0}=1(1.697) & =1.697 \\
e_{r} & =\left(1-|\Gamma|^{2}\right)=\left(1-\left|\frac{73-50}{73+50}\right|^{2}\right)=0.965
\end{aligned}
$$

$$
G_{0 a b s}=e_{0} D_{0}=0.965(1.697)=1.6376
$$

4. Calculate the directivity of an antenna with circular aperture of diameter 3 meter at frequency 5 GHZ .

$$
\mathrm{D}=\frac{4 \Pi}{\lambda^{2}} A_{e m}=\frac{4 \Pi}{\lambda^{2}} *\left(\Pi * r^{2}\right)=\frac{4 \Pi}{\left(\frac{3 * 10^{8}}{5 * 10^{9}}\right)^{2}} *\left(\Pi *(1.5)^{2}\right)=24674 .
$$

5. If the aperture efficiency of an antenna is 0.7 and the beam traveling at 6 GHZ. Calculate the directivity, HPBW, and FNBW (approximately). Given circular aperture of diameter 3 meter.
$\mathrm{D}=\frac{4 \Pi}{\lambda^{2}} * \eta * A_{e m}=\frac{4 \Pi}{\lambda^{2}} * 0.7 *\left(\Pi * r^{2}\right)=\frac{4 \Pi}{\left(\frac{3 * 10^{8}}{6 * 10^{9}}\right)^{2}} * 0.7 *\left(\Pi *(1.5)^{2}\right)=24871$
So $D=24871$.
$D=\frac{41253}{\theta_{H P} \phi_{H P}}=\frac{41253}{\left(\theta_{H P}\right)^{2}}=24871$

So $\left(\theta_{H P}\right)=1.28^{\circ}$.
$F N B W=2 *\left(\theta_{H P}\right)=2.57^{\circ}$.
6. What is the maximum effective aperture (approximately) for a beam antenna having HPBW of $30^{\circ} \& 35^{\circ}$ in perpendicular planes intersecting in the beam axis? Minor lobes are small and may be neglected.
$\mathrm{D}=\frac{4 \Pi}{\lambda^{2}} A_{e m} \rightarrow A_{e m}=\frac{D}{4 \Pi} \lambda^{2}$

Benha University
Faculty of Engineering Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
$4^{\text {th }}$ year communication 2015-2016

$$
\begin{aligned}
& \mathrm{D}=\frac{41253}{\theta_{H P} \phi_{H P}}=\frac{41253}{30 * 35}=39.3 \\
& A_{e m}=\frac{D}{4 \Pi} \lambda^{2}=3.2 \lambda^{2}
\end{aligned}
$$

7. An antenna has a uniform field pattern for $\theta$ between $\left(45^{\circ} \& 90^{\circ}\right)$ ، $\varphi$ between $\left(0^{\circ} \& 120^{\circ}\right)$, if $\mathrm{E}=3 \mathrm{~V} / \mathrm{m}$ at a distance of 500 m from the antenna \& maximum current is 5 A , find the radiation resistance of antenna, Directivity, and effective aperture?

$$
\begin{aligned}
& P=S A=0.5 * I^{2} R_{r}=0.5 * \frac{E^{2}}{Z} \int_{\theta=\frac{\Pi}{4}}^{\frac{\Pi}{2}} \int_{\phi=0}^{\frac{2 \Pi}{3}} r^{2} \operatorname{Sin} \theta d \theta d \varphi=0.5 *(5)^{2} R_{r} \rightarrow \\
& R_{r}=281 \Omega . \\
& \Omega_{A}=\int_{\theta=\frac{\Pi}{4}}^{\frac{\pi}{2}} \int_{\varphi=0}^{\frac{2 \Pi}{3}} \operatorname{Sin} \theta d \theta d \varphi=1.18 \\
& A_{e m}=\frac{\lambda^{2}}{\Omega_{A}}=0.85 \lambda^{2} . \\
& D=\frac{4 \Pi}{\Omega_{A}}=10.67 .
\end{aligned}
$$

8. An isotropic antenna has a field pattern given by $E=10 \mathrm{I}_{\mathrm{o}} / \mathrm{r} \mathrm{V} / \mathrm{m}$, where $I$ is the amplitude of current, $r$ is distance $(m)$, find $R_{r}$. repeat for hemisphere antenna.

$$
\begin{aligned}
& P=S A=\frac{E^{2}}{Z} A=0.5 \frac{100 I^{2}}{r^{2} * Z}\left(4 \Pi * r^{2}\right) \Rightarrow \text { for hemisphere } A=\left(2 \Pi * r^{2}\right) \\
& P=0.5 I_{o}{ }^{2} R_{r} \\
& \text { So } 0.5 \frac{100 \mathrm{I}_{\mathrm{o}}{ }^{2}}{r^{2} * Z}\left(4 \Pi * r^{2}\right)=0.5 \mathrm{I}_{\mathrm{o}}{ }^{2} R_{r} \rightarrow R_{r}=3.33 \Omega
\end{aligned}
$$

9. Find $R_{r}$ of a unidirectional pattern of antenna with $U=8 \operatorname{Sin}^{2} \theta \operatorname{Sin}^{3} \varphi$ wsr $^{-1}$, where $0 \leq \theta \leq \Pi \& 0 \leq \varphi \leq \Pi$. If $\mathrm{I}_{\mathrm{rms}}=3 \mathrm{~A}$.

Benha University
Faculty of Engineering
Shoubra

## Antennas \&Wave Propagation Electrical Eng. Dept. <br> $4^{\text {th }}$ year communication 2015-2016

$$
\begin{aligned}
& P_{r a d}=\int_{0}^{\pi} \int_{0}^{\pi} U d \Omega=\int_{0}^{\pi} \int_{0}^{\pi}\left(8 \operatorname{Sin}^{2} \theta \operatorname{Sin}^{3} \phi\right)^{*} \operatorname{Sin} \theta d \theta d \phi=I^{2} R_{r} \\
& R_{r}=1.6 \Omega
\end{aligned}
$$

10. What is the amplitude of current that would be required in a short dipole of length $0.05 \lambda$ to produce 100 w of radiated power? Assume that the medium surrounding the short dipole in air and the current is uniform distribution.
$P_{\text {rad }}=\frac{1}{2} I_{o}^{2} R_{r}=100$ (note: $I_{o . .}^{2}$ amplitude or max. current.. not terminal)
$R_{r}=80 \Pi^{2} \frac{L^{2}}{\lambda^{2}}=80 \Pi^{2} \frac{(0.05 \lambda)^{2}}{\lambda^{2}}=1.97 \Omega$
So $100=\frac{1}{2} I_{o}^{2} * 1.97 \rightarrow \mathrm{I}_{\mathrm{o}}=10 \mathrm{~A}$.
Note: for $\frac{\lambda}{2}$ dipole(half wave dipole) $. . R_{r}=73 \Omega$
11. What is the max? Power received at a distance of 0.5 Km . over a free-space 1 GHZ circuit consisting of a transmitting antenna with 25 dB gain and receiving antenna with 20 dB gain? The gain is with respect to a lossless isotropic source. The transmitting antenna input is 150 W .

$$
\begin{aligned}
& \lambda=\frac{C}{F}=3 * 10^{8} / 1 * 10^{9}=0.3 \mathrm{~m} \\
& \frac{P_{r}}{P_{i n}}=G_{i n} G_{r}\left(\frac{\lambda}{4 \Pi R}\right)^{2} . \\
& \left.G_{r}\right|_{d b}=10 \log G_{r} \Rightarrow G_{r}=100 \\
& \left.G_{i n}\right|_{d b}=10 \log G_{i n} \rightarrow G_{i n}=316.22 \\
& \frac{P_{r}}{150}=100 * 316.22\left(\frac{0.3}{4 \Pi * 0.5 * 10^{3}}\right)^{2} \Rightarrow P_{r}=10.8 \mathrm{mw}
\end{aligned}
$$

12. A wave traveling normally outward from the page (toward the reader) is the resultant of two elliptically polarized waves, one with components of E given by:

Benha University
Faculty of Engineering Shoubra

## Antennas \&Wave Propagation Electrical Eng. Dept. <br> $4^{\text {th }}$ year communication 2015-2016

$$
\begin{aligned}
& \mathscr{E}_{y}^{\prime}=3 \cos \omega t \\
& \mathscr{E}_{x}^{\prime}=7 \cos \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

And the other with components given by:

$$
\begin{aligned}
& \mathscr{E}_{y}^{\prime \prime}=2 \cos \omega t \\
& \mathscr{E}_{x}^{\prime \prime}=3 \cos \left(\omega t-\frac{\pi}{2}\right)
\end{aligned}
$$

(a) What is the axial ratio of the resultant wave?
(b) Does the resultant vector E rotate clockwise or counterclockwise?

$$
\text { (a) } \begin{aligned}
E_{y}=E_{y}^{\prime}+E_{y}^{\prime \prime} & =3 \cos \omega t+2 \cos \omega t=5 \cos \omega t \\
E_{x}=E_{x}^{\prime}+E_{x}^{\prime \prime} & =7 \cos \left(\omega t+\frac{\pi}{2}\right)+3 \cos \left(\omega t-\frac{\pi}{2}\right) \\
& =-7 \sin \omega t+3 \sin \omega t=-4 \sin \omega t \\
A R & =\frac{5}{4}=1.25
\end{aligned} \text { (b) At } \omega t=0, \vec{E}=5 \hat{a}_{y} .
$$

13. A wave traveling normally out of the page is resultant two elliptically polarized (EP) waves, one with components $E_{x}=$ $5 \operatorname{Cos} \omega t$ and $E_{y}=3 \operatorname{Sin} \omega t$ and another with components $E_{r}=3 e^{j \omega t}$ and $\mathrm{E}_{\mathrm{L}}=4 \mathrm{e}^{-\mathrm{j} \omega \mathrm{t}}$. For the resultant wave, find (a) AR, and (b) the band of rotation and polarization.
```
\(\underline{1}^{\text {st }}\) component
\(E_{x 1}=5 \operatorname{Cos} \omega t\)
\(E_{y l}=3\) Sin \(\omega t\).
\(2^{\text {nd }}\) component
\(E_{r}=3 e^{j \omega t}=3 \operatorname{Cos} \omega t+j 3 \operatorname{Sin} \omega t\)
\(E_{l}=4 e^{-j \omega t}=4 \operatorname{Cos} \omega t-j 4 \operatorname{Sin} \omega t\)
So \(E_{x 2}=3 \operatorname{Cos} \omega t+4 \operatorname{Cos} \omega t=7 \operatorname{Cos} \omega t\)
```

Benha University<br>Faculty of Engineering<br>Shoubra

Antennas \&Wave Propagation Electrical Eng. Dept.
$4^{\text {th }}$ year communication 2015-2016
$E_{y 2}=3 \operatorname{Sin} \omega t-4 \operatorname{Sin} \omega t=-\operatorname{Sin} \omega t$

## Total components

$E_{x t}=E_{x 1}+E_{x 2}=5 \operatorname{Cos} \omega t+7 \operatorname{Cos} \omega t=12 \operatorname{Cos} \omega t$.
$E_{y t}=E_{y 1}+E_{y 2}=3 \operatorname{Sin} \omega t-\operatorname{Sin} \omega t=2 \operatorname{Sin} \omega t$

So $\left(\frac{E_{x t}}{12}\right)^{2}+\left(\frac{E_{y t}}{2}\right)^{2}=1 \ldots$ Ellipse
(a) $A R=12 / 2=6$
(b) Put $\omega t=0$, 90, you will find that this wave is Right polarized \& CCW

## REPORT

1. Design an antenna with omnidirectional amplitude pattern with a halfpower beam width of $90^{\circ}$, Express its radiation intensity by $U=\operatorname{Sin}^{n} \theta$. Determine the value of n and attempt to identify elements that exhibit such a pattern. Determine the directivity of the antenna.

Solution: Since the half-power beamwidth is $90^{\circ}$, the angle at which the half-power point occurs is $\theta=45^{\circ}$. Thus

$$
U\left(\theta=45^{\circ}\right)=0.5=\sin ^{n}\left(45^{\circ}\right)=(0.707)^{n}
$$

or

$$
\begin{aligned}
& U_{\max }=1 \\
& P_{\mathrm{rad}}=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{2} \theta \sin \theta d \theta d \phi=\frac{8 \pi}{3} \\
& D_{0}=\frac{4 \pi}{8 \pi / 3}=\frac{3}{2}=1.761 \mathrm{~dB}
\end{aligned}
$$

2. A uniform plane wave, of is traveling in the positive z-direction. Find the polarization (linear, circular, or elliptical), sense of rotation (CW or CCW), when
(a) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=0$
(b) $E x \neq E y, \Delta \varphi=\varphi y-\varphi x=0$
(c) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=\pi / 2$
(d) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=-\pi / 2$

Benha University
Faculty of Engineering Shoubra

## Antennas \&Wave Propagation Electrical Eng. Dept. <br> $4^{\text {th }}$ year communication 2015-2016

(e) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=\pi / 4$
(f) $\mathrm{Ex}=\mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=-\pi / 4$
(g) $\mathrm{Ex}=0.5 \mathrm{Ey}, \Delta \varphi=\varphi \mathrm{y}-\varphi \mathrm{x}=\pi / 2$
(h) $E x=0.5 E y, \Delta \varphi=\varphi y-\varphi x=-\pi / 2$
(a) Linear because $\Delta \varnothing=0$.
(b) Linear because $\Delta \phi=0$.
(c) Circular because 1. $E_{x}=E_{y}$
2. $\Delta \varnothing=\pi / 2 \quad$ CW
(d) Circular because 1. $E_{x}=E_{y}$
2. $\Delta \varnothing=-\pi / 2 \quad C W$
(e) Elliptical because $\Delta \varnothing$ is not multiples of $\pi / 2$. CW ( $f$ ) Elliptical because $\Delta \phi$ is not multiples of $\pi / 2$ CW
(9). Elliptical because 1. $E_{x} \neq E_{y}$
2. $\Delta \varnothing$ is not zero or multiples of $\pi$.

## CW

(h) Elliptical because 1. $E_{x} \neq E_{y}$
2. $\Delta \varnothing$ is not zero or multiples of $\pi$.

## CW

3. Calculate the polarization loss factor (PLF)...in db and dimensionless of an antenna whose electric field polarization is expressed as: $\vec{E}_{a}=(a \hat{x}+a \hat{y}) E(r, \theta, \phi)$, when the electric field of the incident wave given by $\vec{E}_{i}=a \hat{x} E_{o}(x, y) e^{-j k z}$.

- Unit vector of $\vec{E}_{a}=\hat{P}_{a}=\frac{a x+a y}{\sqrt{1+1}}$
- Unit vector of $\vec{E}_{i}=\hat{P_{w}}=\frac{a \hat{x}}{\sqrt{1}}$
- $\quad P L F=\left|\hat{P}_{w} \cdot \hat{P}_{a}\right|^{2}=1 / 2$.
- $\left.\quad P L F\right|_{d b}=10 \log (0.5)=-3 d b$


## Good Luck

Dr. Gehan Sami
M.M. Elsherbini

